
 www.blacksnwhite.com

black N White black N White

NAME

ROLL
NUMBER

SEMESTER 2nd

COURSE CODE DCA1207

COURSE NAME BCA

Subject Name DATA STRUCTURES

 www.blacksnwhite.com

Q.1) What do you understand by Algorithm Complexity? Discuss Time and
Space Complexity in detail by taking suitable examples

Answer .:-

Algorithm Complexity
Algorithm complexity refers to the measure of the amount of resources an
algorithm uses to solve a given computational problem. The two primary
resources considered are time and space. Complexity helps in analyzing how
efficient an algorithm is in terms of its execution and memory usage,
especially when the input size increases.
Understanding algorithm complexity allows developers to compare different
algorithms and select the most optimal one for their needs.
1. Time Complexity
Time complexity represents the total time taken by an algorithm to complete
its execution, depending on the size of the input. It is generally expressed
using Big O notation (O), which describes the upper bound of the time an
algorithm can take in the worst-case scenario.
Common Time Complexities:

 O(1) – Constant time (e.g., accessing an array element)
 O(n) – Linear time (e.g., traversing a list)
 O(n²) – Quadratic time (e.g., bubble sort)
 O(log n) – Logarithmic time (e.g., binary search)

Example:
for(int i = 0; i < n; i++) {
 cout << i;
}
In this example, the loop runs n times. Hence, the time complexity is O(n).
Binary Search Example:
int binarySearch(int arr[], int n, int key) {
 int low = 0, high = n - 1;
 while(low <= high) {
 int mid = (low + high) / 2;
 if(arr[mid] == key)
 return mid;
 else if(arr[mid] < key)
 low = mid + 1;
 else
 high = mid - 1;
 }
 return -1;
}
This binary search has a time complexity of O(log n) because the search space
is divided by 2 after each iteration.
2. Space Complexity

 SET - I

 www.blacksnwhite.com

Space complexity refers to the amount of memory an algorithm uses relative
to the input size. It includes memory for variables, function calls, and data
structures.
Common Space Complexities:

 O(1) – Constant space
 O(n) – Linear space

Example:
void printArray(int arr[], int n) {
 for(int i = 0; i < n; i++) {
 cout << arr[i];
 }
}
Here, no extra space is used apart from the input array and loop variables.
Thus, space complexity is O(1).
Recursive Example:
int factorial(int n) {
 if(n == 0) return 1;
 return n * factorial(n - 1);
}
This recursive function uses O(n) space due to the call stack created during
each recursive call.
Algorithm complexity plays a vital role in determining how efficient a
program is. While time complexity focuses on the execution time, space
complexity deals with memory usage. Understanding both helps in writing
optimized, scalable, and effective programs for real-world applications.

Q.2) Write an algorithm to find a particular number in an array
and replace it with some other value.

Answer .:-

Problem Statement:
Given an array of n elements, find a particular number (target) and replace all
its occurrences with another number (new value).

Steps:

1. Start

2. Input the size of the array n

3. Declare an array arr[n]

 www.blacksnwhite.com

4. Input n elements into the array

5. Input the number to be found (let’s say target)

6. Input the number to replace with (let’s say newValue)

7. For i from 0 to n-1, repeat steps 8–9

8. If arr[i] == target then

9. Set arr[i] = newValue

10. End loop

11. Print the updated array

12. Stop

Example:

 Input:
Array: [3, 5, 7, 5, 9]
Target: 5
New Value: 0

 Output:
Updated Array: [3, 0, 7, 0, 9]

Q.3) Explain the working of a Queue data structure. What are
its applications in real-world scenarios?

Answer .:-

A Queue is a linear data structure that follows the FIFO principle – First In,
First Out. This means that the element inserted first will be removed first, just
like people standing in a line: the one who comes first is served first.

Working of a Queue

A queue works through two basic operations:

1. Enqueue: This operation adds an element to the rear (or end) of the queue.

2. Dequeue: This operation removes an element from the front of the queue.

Internally, a queue is often implemented using arrays or linked lists. Two
pointers are typically used:

 Front: Points to the first element in the queue.

 www.blacksnwhite.com

 Rear: Points to the last element in the queue.

Example:

Let’s say we insert elements 10, 20, and 30:

 Queue after Enqueue operations: Front → 10 → 20 → 30 ← Rear

Now, if we perform one Dequeue:

 Queue becomes: Front → 20 → 30 ← Rear (10 is removed)

Types of Queue:

1. Simple Queue – Basic FIFO structure.

2. Circular Queue – Connects the rear end back to the front to efficiently use
space.

3. Priority Queue – Elements are served based on priority, not just the order of
insertion.

4. Deque (Double-Ended Queue) – Insertion and deletion can occur at both
ends.

Queue Operations in Pseudocode:

 Enqueue(item):

o If the queue is full → show overflow

o Else:

 Add item at the rear

 Increase rear pointer

 Dequeue():

o If the queue is empty → show underflow

o Else:

 Remove item from front

 Increase front pointer

Real-World Applications of Queue

1. Printer Queue:
When multiple documents are sent to a printer, they are printed in the order
they were received.

2. Customer Service Systems:
Call centers use queues to manage customer support, where calls are answered
in the order they arrive.

3. Operating Systems:
CPU scheduling uses queues to manage processes in multitasking
environments.

 www.blacksnwhite.com

4. Traffic Management:
Vehicles waiting at a traffic signal follow the queue structure; the first one to
arrive leaves first.

5. Data Streaming:
In multimedia streaming, data packets are queued and processed in order to
maintain flow.

6. Breadth-First Search (BFS) in Graphs:
BFS uses a queue to explore nodes level-by-level.

7. Simulation Systems:
Queues are used to model real-world systems such as bank lines or hospital
patient processing.

Conclusion

Queues are essential in both theoretical and practical computer science. Their
FIFO nature makes them ideal for situations where order matters and elements
must be processed in the same sequence they arrive. Understanding queue
operations and their use cases helps in solving many real-world and
programming problems effectively.

 www.blacksnwhite.com

Q.4) What is a linked list and its types? Discuss the benefits of using
them over array in detail.

 Answer .:-
A linked list is a linear data structure used to store a sequence of elements, where
each element (called a node) contains two parts:

1. Data – The actual value stored
2. Pointer (or link) – A reference to the next node in the sequence

Unlike arrays, linked lists do not store elements in contiguous memory locations.
Instead, each node points to the next, forming a chain-like structure.
Types of Linked Lists

1. Singly Linked List
Each node has a pointer to the next node only. Traversal is possible in one
direction, from the head (start) to the end.

Structure:
[Data|Next] → [Data|Next] → [Data|NULL]

2. Doubly Linked List
Each node contains two pointers – one pointing to the next node and one to
the previous. This allows traversal in both directions.

Structure:
NULL ← [Prev|Data|Next] ↔ [Prev|Data|Next] → NULL

3. Circular Linked List
In this type, the last node points back to the first node. It can be singly or
doubly circular.

Structure:
[Data|Next] → [Data|Next] → ... → [Data|First]
Benefits of Linked List over Arrays

1. Dynamic Memory Allocation
o Arrays have a fixed size and need memory to be allocated beforehand.
o Linked lists are dynamic. Memory is allocated only when needed,

reducing wastage.
2. Efficient Insertion and Deletion

o In arrays, inserting or deleting an element (especially in the middle)
requires shifting other elements, which is costly (O(n)).

o In linked lists, insertion/deletion is faster (O(1)) if the position is
known, as it involves just changing the links.

3. No Wastage of Memory
o Arrays may have unused slots (if the actual data is less than declared

size).
o Linked lists use only the memory required for actual data.

4. Implementation of Advanced Data Structures
o Many complex structures like stacks, queues, graphs, and hash

tables use linked lists in their implementation.
5. Ease of Growing Lists

o Expanding an array can be costly as it may require creating a new
array and copying old data.

 SET - II

 www.blacksnwhite.com

o Linked lists can be easily expanded by adding new nodes anywhere.
Limitations of Linked List (Compared to Array)

 No direct access: You can't access elements by index as in arrays (arr[i]).
 Slightly higher memory usage: Each node needs to store a pointer along with

data.
 Slower traversal: To access a node, you may need to traverse from the

beginning.
Conclusion
Linked lists are an essential data structure offering flexibility, efficient memory
usage, and fast insertions/deletions. While arrays provide faster random access,
linked lists are superior for applications where data size changes frequently or
memory management is critical.

Q.5) What is a doubly circular queue? Write an algorithm to display
the contents of the circular queue.

Answer .:-

A Doubly Circular Queue is a hybrid data structure that combines features of a
doubly linked list and a circular queue.

 It is circular because the last node is connected to the first, forming a loop.

 It is doubly linked, meaning each node has two pointers: one to the next
node and one to the previous node.

This allows:

 Efficient insertion and deletion from both ends (front and rear).

 Traversal in both directions (forward and backward).

Structure of a Node

Each node has:

[Prev | Data | Next]

And it connects like:

← [Prev|Data|Next] ⇄ [Prev|Data|Next] ⇄ [Prev|Data|Next] →

 ↑ ↓

 Tail ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←

Algorithm to Display Contents of a Doubly Circular Queue

Assumptions:

 front points to the first node of the queue

 Each node has data, next, and prev

Algorithm:

Step 1: Start

 www.blacksnwhite.com

Step 2: If front == NULL

 Display "Queue is empty"

 Exit

Step 3: Set temp = front

Step 4: Repeat

 → Display temp.data

 → Set temp = temp.next

 Until temp == front

Step 5: Stop

Explanation:

 The algorithm starts at the front of the queue.

 It uses a loop to move through each node using the next pointer.

 It continues displaying elements until it returns to the front node, ensuring it
prints all nodes exactly once in a circular fashion.

Example Output:

If the queue contains 10 → 20 → 30 → 40, the output will be:

Queue contents: 10 20 30 40

Use Cases:

 CPU scheduling (multi-directional rotation)

 Undo/redo operations

 Task management in operating systems

Q.6) Write an algorithm for Merge Sort and explain its divide-and-
conquer approach.

Answer .:-

Merge Sort is a popular sorting algorithm that uses the divide-and-conquer
technique. It breaks the problem into smaller sub-problems, solves them
independently, and then combines their results.

Divide and Conquer Strategy in Merge Sort

1. Divide:
The array is divided into two halves until each sub-array has only one element.

2. Conquer:
Each small sub-array is sorted individually (since a single element is always
sorted).

3. Combine (Merge):
The sorted sub-arrays are then merged back together in a sorted manner.

This recursive process continues until the whole array is sorted.

 www.blacksnwhite.com

Algorithm for Merge Sort

Let A be the input array, and p and r be the starting and ending indices of the array
segment.

MergeSort(A, p, r)

1. If p < r:

2. q = (p + r) / 2 // Middle index

3. MergeSort(A, p, q) // Sort left half

4. MergeSort(A, q+1, r) // Sort right half

5. Merge(A, p, q, r) // Merge both halves

Merge(A, p, q, r)

1. Let n1 = q - p + 1

2. Let n2 = r - q

3. Create two temporary arrays L[1...n1] and R[1...n2]

4. Copy data from A[p...q] into L[1...n1]

5. Copy data from A[q+1...r] into R[1...n2]

6. Set i = 0, j = 0, k = p

7. While i < n1 and j < n2:

 If L[i] <= R[j]:

 A[k] = L[i]

 i = i + 1

 Else:

 A[k] = R[j]

 j = j + 1

 k = k + 1

8. Copy any remaining elements of L[]

9. Copy any remaining elements of R[]

Example:

Given array: [38, 27, 43, 3, 9, 82, 10]

 Divide:
→ [38, 27, 43, 3] and [9, 82, 10]
→ Further divide into single elements

 Merge:
→ [27, 38, 43], [3, 9, 10, 82], and finally
→ [3, 9, 10, 27, 38, 43, 82]

Advantages of Merge Sort

 Stable sort (does not change the order of equal elements)

 Guaranteed O(n log n) time complexity

 www.blacksnwhite.com

 Ideal for sorting linked lists and large datasets

Time Complexity

 Best, Average, and Worst Case: O(n log n)

 Space Complexity: O(n) (due to temporary arrays)

Merge Sort is a powerful and efficient sorting technique. Its divide-and-conquer
nature makes it suitable for large datasets and parallel computing. Though it requires
extra memory space, its consistent performance makes it reliable and widely used in
real-world applications.

